
Real-Time Risk Simulation
The GPU Revolution In Profit Margin Analysis

Gilles Civario gilles.civario@ichec.ie

Renato Miceli renato.miceli@ichec.ie

mailto:gilles.civario@ichec.ie
mailto:renato.miceli@ichec.ie

Outline

• ICHEC in a nutshell

• The project context and customer requirements

• Technical environment and constraints

• Two case studies in porting

• Leveraging the lessons and community building

• Conclusion

2

ICHEC in a nutshell

• Irish Centre for High-End Computing

• The Irish HPC resources centre

• One keyword: Enablement

• GPU computing

– Since 2009

– 7th NVIDIA CRC

– 2nd HMPP CoC

3

http://research.nvidia.com/content/cuda-research-center-crc-program

Technology transfer
• New activity

– Started from a green field in October 2009

– Many successes since then

– Main activities

• Consultancy

• Training

• Data mining and analytics

• GPU acceleration

http://gpgpu.ichec.ie

4

http://gpgpu.ichec.ie/

The present project

• Disclaimer: details under strict NDA

– No company name

– No activity details

• But many interesting points still

– London-based company

– World leader in its sector

– $5+ billion annual revenue

– 35% sustained yearly growth over the past 10 years

5

Project constraints

• Optimise the computational part of a tool chain

– Web based application for end-users

– Written in Java and C#

– Data updated in “real time”

– Should give immediate result (500ms maximum computing time)

– Should stay on one single server (no cluster allowed)

– Monte Carlo type simulations of coming and/or on-going “events”

• The more simulations run in the given time window, the better

  Faster computation = Higher accuracy
6

Project goals

• Showcasing the potential of GPU acceleration

• Two simulators to port

– The most simplistic one

– The most complex one

• Integration to the production chain

• If successful

– Training of the developers

– Further in-house developments

7

The first simulator

• The simplest simulator of the chain

– 2000 lines of Java code (600 for computing)

– Simulates events of fixed duration

– Based on very wide tree random traversal

• Weights based on collected statistics

– Simulates all clock ticks but only collects statistics every 100 ticks

– Results gathered as histograms

• Use: risk assessment for the occurrence of critical events

8

Porting strategy

• Keeping the Java front end

• Offloading the computational intensive part to native
code with Java Native Interface

• Creating a C++ native version of it as a dynamic library

• Offloading the computationally intensive part to GPU
with CUDA: one CUDA thread per simulation

• Collecting results from the GPU back to CPU and then to
the Java virtual machine

9

Architecture

10

Stage 1: Native C++

• Data transfers of multi-dimensional Java arrays: data
linearisation at the C++ level

• Ease of access to the linearised data: access macros
(or C++ templates)

• CPU parallelisation of the code: OpenMP

• Random Number Generator: drand64

– Thread-safe version drand64_r

– Initialisation and possible bias?

11

Stage 2: CUDA code

• Maximisation of the caching potential
– Constant data in __constant__ memory

– Lookup tables in texture memory

– Histogram accumulations in __shared__ memory

• Access macros to mimic multi-dimensional arrays

• The final code is almost identical to the initial Java one

The initial developers can maintain and evolve it easily

The code is not dead!

12

What it looks like

__device__ float getProb(int timeIndex1, int indexToUse, int timeIndex2){

 indexToUse = max(min(indexToUse, 80), 30);

 if (timeIndex1 >= my_Constants.get2D(delimiter, timeIndex2, 1) && timeIndex2 > 2){

 return my_Constants.get2D(gProb,

 timeIndex1 - my_Constants.get2D(delimiter, timeIndex2, 1),

 indexToUse);

 } else

 return 0.0f;

}

 public float getProb(int timeIndex1, int indexToUse, int timeIndex2){

 indexToUse = Math.max(Math.min(indexToUse, 80), 30);

 if (timeIndex1 >= Constants.getInstance().delimiter[timeIndex2][1] && timeIndex2 > 2){

 return Constants.getInstance().gProb

 [timeIndex1 - Constants.getInstance().delimiter[timeIndex2][1]]

 [indexToUse];

 } else

 return 0.0f;

}

JAVA

CUDA
13

Testing environment

• Development machine

– 2 Intel Xeon X5650 Westmere @ 2.67GHz

• 6 cores per CPU (state of the art at the time)

– 2 NVIDIA Tesla C2050

• 448 CUDA cores per GPU (state of the art at the time)

– Linux Debian 6

• Java 6.0 Sun JDK and OpenJDK

• GCC 4.4 and 4.5 plus Intel C compiler 11.1

• NVIDIA CUDA compiler 3.2 and 4.0

  Fair performance comparisons (no “cheats”)
14

Performance results

1x

2x

4x

8x

16x

32x

64x

128x

256x

Java C++ CUDA

1.0x

1.9x

89.6x

2.0x

3.7x

179.2x

3.0x

12.3x
1 Thread

2 Threads

12 Threads

15

Main challenges

• Transferring data between Java and native code  JNI

• CPU level parallelisation  OpenMP

• Random number coherence  CURAND library

• Multi-dimensional lookup tables  texture memory

• Wide area to explore with one single thread per
simulation  thread divergence?

16

The second simulator

• The most complex simulator of the chain

– 4000 lines of Java (2500 for computing)

– Freshly translated from C# and still buggy

– Simulates events of fixed duration

– Based on mathematical formulas

– Simulates the whole event and collects a few statistics at the end

– Results gathered as histograms

• Use: risk assessment for the occurrence of critical events

17

New challenges

• Still fresh  in depth refactoring and debugging

• Truly object-oriented programming  same approach in

C++ and CUDA

• Computes in double rather than float  use of a

versatile “real” type

• Intensive use of log, exp, pow, and sqrt  limited by

registers?

18

Porting strategy

• Same as for the first code, but

– Better integration within Java

– Dynamic choice of back-end

• Java: as initially

• C++: native multi-CPU

• CUDA: native multi-GPU

– Impact assessment of precision for correctness and performance

90% of sources shared between C++ and CUDA

Final application of production quality
19

Remarks on optimisation

• Compute-bound code

– Limiting factor: number of registers (spilled in local memory)

– Increasing the L1 cache size gives a 40% boost in performance

• Need of atomicAdd for collecting the results

– Not available for double (so far)

• Software version: slow and sometimes deadlocking

• No precision impact  use float for the corresponding data

20

What does it look like?

21

Performance results

1x

2x

4x

8x

16x

32x

64x

128x

256x

Java C++ CUDA
double prec

CUDA
single prec

CUDA
single prec
fast math

1.0x

1.6x

21.2x

53.4x

121.5x

1.9x

3.2x

42.4x

106.8x

243.0x

2.7x

18.1x

1 Thread

2 Threads

12 Threads

22

Result analysis

• C++ version not much faster than the Java one

– Compute bound with Java intrinsic functions already optimised

– But much better parallelism than Java

• Precision impact

– Double faster than float on CPU

– Float faster than double on GPU

– Almost no difference in precision for the results

– Use of fast-math option very slightly changes the results in
exchange of a 2.3x gain in performance

23

Current status

• Scalability tested with up to 8 M2090 cards

– Per-card scalability C2050  M2090 (c. +25%)

– Codes scale almost linearly to the
number of cards (7.6x for 8 cards)

• Tested with CUDA 4.1

– Direct +10% for code 2

– No change for code 1

  A whooping 840x for code 1 and 1100x for code 2

∞

24

Follow-up: training

• Development of a CUDA training course

– 3 days of training (lessons + labs)

– NVIDIA-certified material

– Certified CUDA programmers teaching

– Possibility to deliver a certificate of completion
at the end of the training

• 2 more days of pre-course training

– Prerequisites for Linux and C++

– Parallel algorithms and development

25

Leveraging
the Lessons Learned

26

Enhancements to Java

• JNI part

– Mechanical: just do it

– But error prone…

– Could be automated

• Native part

– Java translates in C++ almost directly

– A few pitfalls, though…

– Could be automated

27

Java2CUDA compiler

• OpenACC-like annotations for Java code

– Compiles Java code straight to CUDA

• Translates user-defined Java abstractions

• Provides a GPU-aware Java API on the CUDA side

– Accelerates to GPUs based on loop parallelization

• Aids developers to port code to GPUs

– Provides code acceleration in no time

– Avoids moving developers from their usual environment

– Does not change programming paradigm (hides CUDA abstractions)

28

JThrust

• Framework for GPU programming in Java

– Based on the NVIDIA Thrust library

– Accelerates to GPUs based on routine calls

• Provides a C++ STL-like high-level programming API

– General algorithms: sorting, randomising

– Functional features: mapping, reducing, filtering

– Data structures: lists, trees, maps

– Why framework?
JThrust can be extended with user-defined routines

29

JThrust: how should it work?
import ie.ichec.jthrust.*;

public class Snippet {

 public static void main(String[] args) {

 List<Integer> hostList = new HostList<Integer>();

 new RandomNumberGenerator<Integer>(

 RandomNumberGenerator.createRandomSeed()).generate(hostList);

 List<Integer> deviceList = new DeviceList<Integer>(hostList);

 new Sorter<Integer>(Sorter.DEFAULT_INTEGER_SORT).sort(deviceList);

 hostList.clean();

 hostList.addAll(deviceList);

 System.out.println(hostList);

 }

}
30

JThrust: current status

• A prototype is being developed

– First working version should be released soon!

• Basic features come from the current Thrust lib

– Want other features? Let us know!

• Have a Java application to be accelerated?

– Let’s test the “2X in 4 Weeks” thesis together 

31

Conclusion
• GPU computing for Java financial applications works!

– Regardless of computational complexity

• Tremendous potential speed-ups

– Same time window for 100x to 1000x more simulations
 Higher level of model precision

– Allows to trade speed for model complexity
 Enable new models previously computationally unreachable

• The Java to CUDA translation process is sensitive

– Java and CUDA are alike, but moving data around is critical

  New on-going developments to make it even simpler
32

Questions?

